An alternative general preparation of 2-alkyl-1-benzostannepines and their conversion into 1-benzostibepines and 1-benzoborepines via a tin-metal exchange \dagger

Haruki Sashida * and Atsuhiro Kuroda
Faculty of Pharmaceutical Sciences, Hokuriku University, Kanagawa-machi, Kanazawa 920-1181, Japan. E-mail: h-sashida@hokuriku-u.ac.jp
Received (in Cambridge, UK) 1st February 2000, Accepted 7th April 2000
Published on the Web 23rd May 2000

The 2-alkyl-1-benzostannepines $\mathbf{4 a - g}$ were prepared by the intramolecular hydrostannation of the tin intermediates 3 to an acetylenic moiety in one pot from (Z)-1-(o-bromophenyl)but-1-en-3-ynes 1 . The obtained stannepines 4 were easily converted into the 1-benzostibepines $\mathbf{9}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}$ and the 1-benzoborepines $\mathbf{1 4}, \mathbf{1 5}$ by tin-antimony and tin-boron exchange reactions in moderate to good yields, respectively. The 1-benzoborepines $\mathbf{1 4}$ and $\mathbf{1 5}$ are hitherto unknown heterocyclic ring systems.

Introduction

There has been considerable interest in the chemistry of heterocycles containing a tin atom. The chemistry of the stannole ring system, ${ }^{1,2}$ stannacyclopentadiene, has been reviewed and a large number of compounds has been prepared. Although the chemistry of the six-membered tin-containing heterocycles ${ }^{3}$ has also been widely studied, the corresponding seven-membered heterocycles (stannepines) have only occasionally been studied. The C-unsubstituted 3-benzostannepine IIA, ${ }^{4}$ the fully unsaturated heterocycle containing a tin atom at the C-3 position, was prepared by the intermolecular hydrostannation of o-diethynylbenzene I more than 35 years ago. The thiophene ring- IIB ${ }^{\text {sa }}$ and IIC, ${ }^{5 b}$ the pyrrole ring- IID ${ }^{6}$ and the cyclopentane ring-fused stannepines IIE 7 have also been synthesized by the extension of this annellation reaction. Furthermore, monocyclic stannepines IV have been obtained by not only the above hydrostannation ${ }^{8}$ but also by ring enlargement ${ }^{9}$ of the carbene intermediate from the 1,4-dihydrostannabenzene III (Scheme 1).

On the one hand, it is well known that these parent stannepines can be transformed into the corresponding derivatives of borepines ${ }^{4 b, 5-7,8 b, 10}$ and stibepines ${ }^{11}$ by the tin-metal exchange reaction. Stannepines are thus useful as the key starting materials for the preparation of other heteroepines. However, only two reports of the synthesis of the 1-benzostannepines $\mathbf{V},{ }^{12,13}$ theoretically possible structural isomers, have been known in very recent years. The C-unsubstituted 1 -benzostannepine ${ }^{12}$ and the 2-trimethylsilyl derivative ${ }^{12}$ have been prepared by the coupling of dimethyltin dichloride and the 1,6 -dilithium compound, generated from (Z, Z)-1-bromo-4-(2-bromophenyl)-1-trimethylsilylbuta-1,3-diene. 2-tert-Butyland $2-n$-butyl-1-benzostannepines ${ }^{13,14}$ have also been obtained by the reaction of the corresponding 1-benzotellurepines ${ }^{15}$ with tert-butyllithium, followed by treatment with di- n-butyltin dichloride. However, these routes are fairly limited and not general; in particular, the former method provides no variety of 2-alkyl substituted 1-benzostannepines.

Previously, we reported the synthesis of the 1-benzotellurepines ${ }^{15}$ and the 1 -benzoselenepines, ${ }^{15}$ which are novel seven-

[^0]

IIB

IID

III

IIE

IV

Scheme 1
membered heterocycles containing a tellurium or selenium element, via the successive intramolecular addition of telluroles or selenoles to a triple bond. Moreover, for several years we

5

6

7
a $\mathrm{R}=\mathrm{Bu}^{t}$
b $\mathrm{R}=\mathrm{Bu}^{n}$
c $\mathrm{R}=\mathrm{Me}$
d $\mathrm{R}=\mathrm{Pr}^{n}$
e $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{13}$
f $\mathrm{R}=\mathrm{C}_{8} \mathrm{H}_{17}$
g $\mathrm{R}=\mathrm{Cy}$
h $\mathrm{R}=\mathrm{TMS}$
i $\mathrm{R}=\mathrm{Ph}$

have focused on the synthesis of various heterocyclic ring systems ${ }^{16}$ using efficient intramolecular cyclization reactions involving an acetylenic group. In this paper, we describe the novel route for preparation of the stable 2-alkyl-1-benzostannepines by a similar cyclization and the transformation of stannepines into 1-benzoborepines and 1-benzostibepines via the replacement of tin with antimony or boron. ${ }^{14}$

Results and discussion

Synthesis of 1-benzostannepines

The synthesis of the 2-alkyl-1,1-dibutyl-1-benzostannepines $\mathbf{4}$ is shown in Scheme 2. (Z)-1-(o-Bromophenyl)but-1-en-3-ynes 1, which were obtained in our previous study, ${ }^{15 b}$ were lithiated with 2.2 equiv. of $\mathrm{Bu}^{t} \mathrm{Li}$ in the presence of $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMEDA) in anhydrous hexane at $-80^{\circ} \mathrm{C}$, and then treated with 1.1 equiv. of di- n-butylchlorotin hydride $\left(\mathrm{Bu}^{n}{ }_{2} \mathrm{ClSnH}\right){ }^{17}$ which was freshly generated from an equal amount of di- n-butyltin dichloride $\left(\mathrm{Bu}^{n}{ }_{2} \mathrm{SnCl}_{2}\right)$ and di- n butyltin dihydride $\left(\mathrm{Bu}_{2}{ }_{2} \mathrm{SnH}_{2}\right)$, giving the desired 2-alkyl-1benzostannepines $\mathbf{4 a - g}$ as stable colorless oils, together with the debrominated (Z)-1-(phenyl)but-1-en-3-ynes 5 and the bis $[(Z)$ -o-(but-1-en-3-ynyl)phenyl]dibutylstannanes 6. These materials could be separated by silica gel column chromatography. The enyne compounds 5 were probably produced by the hydrolysis of the lithio derivatives $\mathbf{2}$. The formation of the diarylstannanes 6 could be easily explained by the process involving a $1: 2$ coupling of $\mathrm{Bu}_{2}{ }_{2} \mathrm{Cl}_{2} \mathrm{Sn}$ and 2. Treatment of the trimethylsilyl derivative $\mathbf{1 h}$ with $\mathrm{Bu}^{t} \mathrm{Li}$ in a similar manner gave a complex mixture without any detectable compounds, and lithiation of the phenyl derivative $\mathbf{1 i}$ resulted in 5 -exo-dig cyclization to afford 1-benzylideneindene 7 in low yield without producing any tin-containing compounds. A similar cyclization of the lithio compound having a phenylacetylene moiety ${ }^{18}$ that produced a five-membered compound has already been reported.

It is well known that the intermolecular addition of organotin hydride compounds to a carbon-carbon triple bond induced by radical initiators (e.g., AIBN, $\mathrm{Et}_{3} \mathrm{~B}$), ${ }^{19}$ transition metal catalysts (e.g., $\left.\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right){ }^{20}$ base catalysts ${ }^{4}$ or Lewis acid catalysts (e.g., $\left.\mathrm{ZrCl}_{4}, \mathrm{HfCl}_{4}\right)^{21}$ gives the hydrostannylation products, and this addition frequently proceeds in the absence of a catalyst. ${ }^{22}$ Therefore, the stannepines 4 may probably be obtained by the intramolecular 7 -endo-dig ring closure of the tin hydride intermediates 3 at the sp carbon of the triple bond, as shown in Scheme 2. Compounds 4 are quite stable and are not sensitive to air, light or even moisture. 2-Methyl- 4e, 2-n-propyl- 4d, 2-n-hexyl- 4e, 2-n-octyl- 4f and 2-cyclohexyl-1-
benzostannepine $\mathbf{4 g}$ are new compounds, although 2-tert-butyl $\mathbf{4 a}$ and $2-n$-butyl derivative $\mathbf{4 b}$ have been prepared in our recent work. ${ }^{13}$ These results are summarized in the electronic supplementary data (Table 1). The structural assignment of the products 4,5 and $\mathbf{6}$ could be made from the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and HRMS spectra (electronic supplementary data, Table 2, and Experimental section). No six-membered 6 -exo-dig products $\mathbf{8}$ were formed by this ring closure reaction, although in the case of intramolecular hydrotelluration and hydroselenation at a carbon-carbon triple bond, as described in our previous paper, ${ }^{15}$ both the 7 -endo-dig and the 6 -exo-dig reactions took place. Furthermore, a similar hydrosilylation gave only the 6 -exo-dig products. ${ }^{16 i}$ The reason for the differences caused by changing the element is not clear at present.

Conversion of stannepines into stibepines

C-unsubstituted 1-benzostibepine ${ }^{12}$ and the 2 -tert-butyl and 2 - n-butyl derivatives ${ }^{13}$ have been previously obtained. The tin-antimony exchange reactions of 3-benzostannepine ${ }^{11}$ and the six-membered tin-containing heterocyclic compounds ${ }^{3 a, 3 h, 23}$ have been extensively studied. These reactions prompted us to examine a similar replacement reaction using the 1 -benzostannepines obtained in this work for the purpose of producing the 1 -benzostibepines. The stannepines $\mathbf{4 a}, \mathbf{b}$ readily reacted with 1.0 equiv. of antimony trichloride $\left(\mathrm{SbCl}_{3}\right)$ in CHCl_{3} at $0^{\circ} \mathrm{C}$ to almost quantitatively afford the corresponding 1 -chloro-1benzostibepines $9 \mathbf{9}, \mathbf{b}$, but these compounds were too unstable to be isolated. Thus, we planned the transformation of 9 into the $S b$-phenyl or -alkyl substituted derivatives. Treatment of the 1 -chlorostibepines 9 (freshly prepared without purification after removal of the solvent and the generated $\mathrm{Bu}^{n}{ }_{2} \mathrm{SnCl}_{2}$ under reduced pressure) with a small excess of phenyllithium in ether at $-20^{\circ} \mathrm{C}$ afforded the 1 -phenyl-1-stibepines $\mathbf{1 0}$ in moderate yields (Scheme 3). The methyl 11 and $1-n$-butyl derivatives $\mathbf{1 2}$ were also obtained in a similar manner by using methyllithium and n-butyllithium instead of phenyllithium, respectively. Compounds 10, 11 and $\mathbf{1 2}$ were more stable than the 1 -chlorostibepines 9 and could easily be purified by normal silica gel chromatography.

After the reaction of the stannepine $\mathbf{4 a}$ with dichlorophenylstibine $\left(\mathrm{Cl}_{2} \mathrm{SbPh}\right)$ in $\mathrm{CHCl}_{3}, \mathbf{4} \mathbf{a}$ was recovered together with a small amount of the diene compound $\mathbf{1 3} \cdot{ }^{15 b}$ Although the $S b$-phenyl substituted stibepines are described in the literature, the $S b$-alkyl derivatives could not be obtained due to the thermal instability of the reagents (dihaloalkylstibines). Thus, compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ are the first isolated examples of 1-alkyl-1-benzostibepines.

4a $\mathrm{R}=\mathrm{Bu}^{t}$
b $\mathrm{R}=\mathrm{Bu}^{n}$
vi, vi
$14 \mathrm{Y}=\mathrm{Cl}$
$15 \mathrm{Y}=\mathrm{Ph}$

9
$11 \mathrm{X}=\mathrm{Me}$ $12 \mathrm{X}=\mathrm{Bu}^{n}$

Scheme 3 Reagents and conditions: i, SbCl_{3} (1 equiv.), $\mathrm{CHCl}_{3}, 0^{\circ} \mathrm{C}, 30$ min ; ii, PhLi (1.2 equiv.), ether, $-20^{\circ} \mathrm{C}, 30 \mathrm{~min}$ (for 10); iii, $\mathrm{MeLi}(1.2$ equiv.), ether, $-20^{\circ} \mathrm{C}, 30 \mathrm{~min}$ (for 11); iv, $n-\mathrm{BuLi}(1.2$ equiv.), ether, $-20^{\circ} \mathrm{C}, 30 \mathrm{~min}$ (for 12); v, $\mathrm{PhSbCl}_{2}, \mathrm{CHCl}_{3}, 0^{\circ} \mathrm{C}$; vi, BCl_{3} (1 equiv.), hexane, room temp., 1 h (for 14); vii, PhBCl_{2} (1 equiv.), hexane, room temp., 1 h (for 15).

Conversion of stannepines into borepines

We next examined the tin-boron exchange reaction ${ }^{24}$ in order to form the novel 1-benzoborepines using the more stable and easily available 2 -tert-butyl-1-benzostannepine $\mathbf{4 a}$. The reaction of 1 -stannepine $\mathbf{4 a}$ with 1.0 equiv. of boron trichloride $\left(\mathrm{BCl}_{3}\right)$ in n-hexane at room temperature resulted in the desired tin-boron exchange to give 2 -tert-butyl-1-chloro-1-benzoborepine 14a, which could be purified by distillation under reduced pressure in spite of its being air- and moisture-sensitive. The treatment of 1-chloroborepine 14a with phenyllithium or alkyllithium resulted in decomposition and afforded no products. However, the air- and moisture-sensitive 1 -phenyl derivative 15 a was obtained by the reaction of 4 a with dichlorophenylborane $\left(\mathrm{PhBCl}_{2}\right)$ under similar conditions.

The monocyclic fully unsaturated borepines, ${ }^{8,25}$ 3-benzoborepines ${ }^{4,10}$ and other ring-fused derivatives ${ }^{5-7,26}$ have now been recognized and established as aromatic compounds by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic studies, molecular orbital calculations and X-ray crystal analyses. It is well known ${ }^{4,8}$ that the olefinic protons of these borepines appear at lower field because of a diamagnetic ring current induced by cyclic conjugation through the boron atom, and/or the decrease in electron densities on the olefinic protons due to the overlap between the boron vacant p orbital and π systems. ${ }^{3 e, 27}$ The ${ }^{1} \mathrm{H}$ NMR spectra of the 1 -benzoborepines $\mathbf{1 4}$ and $\mathbf{1 5}$ show signals arising from the borepine ring protons $(3-\mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H})$ at lower field than those of the 1 -benzostannepines 4 and the 1-benzostibepines 9, 10, $\mathbf{1 1}$ and $\mathbf{1 2}$ obtained in this work. In particular, the proton signals of $4-\mathrm{H}$ are shifted $0.34-0.64 \mathrm{ppm}$ downfield, and appeared $0.25-0.62 \mathrm{ppm}$ more downfield in comparison to those of the $S n$-di- n-butyl substituted 1-benzostannepines 4. In addition, the observed coupling constants, $J_{3,4}(\mathbf{1 4 a}: 8.4 \mathrm{~Hz}$, 15a: 7.0 Hz) are somewhat large, while the values of $J_{4,5}$ of 11.0 and 11.7 Hz observed in $\mathbf{1 4 a}$ and $\mathbf{1 5 a}$ are smaller than those of the normal seven-membered 1 -benzoheteroepines containing a heavier element. ${ }^{12,13,15,28}$ In the ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 5}$, three $\mathrm{sp}^{2} \alpha$ carbon atoms, appearing at $\delta 141.6$ (s), 148.4 (s) and 159.3 (s), are almost identically deshielded while the signals of the other sp^{2} doublet γ carbons are in the normal region for aromatic and olefinic carbon atoms. These observations indicate that the 1-benzoborepines obtained in this work are aromatic.

Conclusions

In the present work, the general synthesis of 2-alkyl-1-benzostannepines by an intramolecular hydrostannation reaction with a triple bond was achieved. The parent stannepines were transformed into the corresponding 1-benzostibepines and 1-benzoborepines by a tin-metal exchange. Further reactions and applications of the stannepines including other tin-metal exchanges are now under investigation.

Experimental

Melting points were measured on a Yanagimoto micro melting point hot stage apparatus and are uncorrected. IR spectra were recorded on a Hitachi 270-30 spectrometer. Mass spectra (MS) and HR-MS were recorded on a JEOL JMS-DX300 instrument. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL PMX-60SI (60 MHz), JEOL EX-90A (90 MHz) or JEOL JNM-GSX 400 (400 MHz) spectrometer in CDCl_{3} using tetramethylsilane as internal standard and J values are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-GSX $400(400 \mathrm{MHz})$ spectrometer.

General procedure for the reaction of (\boldsymbol{Z})-1-(\boldsymbol{O}-lithiophenyl)but-1-en-3-ynes with $\mathrm{Bu}_{2}{ }_{2} \mathrm{SnHCl}$: formation of 2-alkyl-1,1-dibutyl-1benzostannepines $4,(Z)$-1-(phenyl)but-1-en-3-ynes 5 and bis $[(Z)$ -\boldsymbol{o}-(but-1-en-3-ynyl)phenyl]dibutylstannane 6
To a stirred solution of (Z)-1-(o-bromophenyl)but-1-en-3-yne 1 (5 mmol) and TMEDA ($1.8 \mathrm{ml}, 10 \mathrm{mmol}$) under an argon atmosphere was slowly added $\mathrm{Bu}^{t} \mathrm{Li}$ (1.6 mol in pentane solution, $7.5 \mathrm{ml}, 12 \mathrm{mmol}$). After the reaction mixture had been stirred at the same temperature for 30 min , di- n-butylchlorotin hydride (5.5 mmol , freshly prepared from di-nbutyltin dihydride and one equivalent of di- n-butyltin dichloride at room temperature in quantitative yield) was added. The reaction mixture was allowed to warm to room temperature during 3-4 h with stirring. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{ml})$ was added, and the layers were separated. The aqueous layer was extracted with ether $(50 \mathrm{ml} \times 2)$. The organic layers were washed with brine ($50 \mathrm{ml} \times 2$), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The resulting residue was chromatographed on silica gel eluted with n-hexane to give $\mathbf{4}, 5$ and 6 . The results are summarized in Table 1 and the spectral data for the stannepines 4 are listed in Table 2 (see electronic supplementary information). The absorption due to $\mathrm{C} \equiv \mathrm{C}$ of compounds $\mathbf{5}$ could not be observed in the IR spectrum.
(Z)-5,5-Dimethyl-1-phenylhex-1-en-3-yne 5a. Colorless oil, $\delta_{\mathrm{H}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.30\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 5.68(1 \mathrm{H}, \mathrm{d}, J 11.8$, $\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-), 6.56$ ($1 \mathrm{H}, \mathrm{d}, J 11.8$, $\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-$), $7.30-7.45$ and 7.83-8.00 ($3 \mathrm{H}, \mathrm{m}$ and $2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$) (HRMS m/z Calc. for $\mathrm{C}_{14} \mathrm{H}_{16}: 184.1253$. Found 184.1258).
(\boldsymbol{Z})-1-Phenyloct-1-en-3-yne 5b. Colorless oil, $\delta_{\mathrm{H}}(90 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.80-1.69$ and $2.24-2.57\left(7 \mathrm{H}, \mathrm{m}\right.$ and $\left.2 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{n}\right), 5.70$ $(1 \mathrm{H}, \mathrm{dt}, J 12.0,2.4, \mathrm{Ph}-\mathrm{CH}=\mathrm{C} H-), 6.58$ ($1 \mathrm{H}, \mathrm{d}, J 12.0$, Ph-$\mathrm{CH}=\mathrm{CH}-), 7.22-7.47$ and $7.80-8.04(3 \mathrm{H}, \mathrm{m}$ and $2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H})$ (HRMS m / z Calc. for $\mathrm{C}_{14} \mathrm{H}_{16}: 184.1253$. Found: 184.1250).
(\boldsymbol{Z})-1-Phenylhept-1-en-3-yne 5d. Colorless oil, $\delta_{\mathrm{H}}(90 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.05,1.40-1.75$ and $2.42(3 \mathrm{H}, t, J 7.6,2 \mathrm{H}, \mathrm{m}$ and 2 H , tq, $\left.J 6.8,2.4, \operatorname{Pr}^{n}\right), 5.69(1 \mathrm{H}, \mathrm{dt}, J 11.9,2.4, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-), 6.55$ $(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-), 7.25-7.45$ and $7.81-7.92(3 \mathrm{H}, \mathrm{m}$ and $2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$) (HRMS m/z Calc. for $\mathrm{C}_{13} \mathrm{H}_{14}: 170.1096$. Found: 170.1098).
(\boldsymbol{Z})-1-Phenyldec-1-en-3-yne 5e. Colorless oil, $\delta_{\mathrm{H}}(90 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.79-1.73$ and $2.23-2.38\left(11 \mathrm{H}, \mathrm{m}\right.$ and $\left.2 \mathrm{H}, \mathrm{m}, n-\mathrm{C}_{6} \mathrm{H}_{13}\right)$, $5.69(1 \mathrm{H}, \mathrm{dt}, J 12.0,2.2, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-), 6.56(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{Ph}-$
$\mathrm{CH}=\mathrm{CH}-), 7.20-7.50$ and $7.79-7.98(3 \mathrm{H}, \mathrm{m}$ and $2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H})$ (HRMS m / z Calc. for $\mathrm{C}_{16} \mathrm{H}_{20}: 212.1566$. Found: 212.1560).
(Z)-4-Cyclohexyl-1-phenylbut-1-en-3-yne 5 g . Colorless oil, δ_{H} ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $0.90-1.95$ and $2.61(10 \mathrm{H}, \mathrm{m}$ and $1 \mathrm{H}, \mathrm{m}, \mathrm{Cy})$, 5.70 ($1 \mathrm{H}, \mathrm{dd}, J 12.1,2.2, \mathrm{Ph}-\mathrm{CH}=\mathrm{C} H-$), $6.55(1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{Ph}-$ $\mathrm{CH}=\mathrm{CH}-$), $7.25-7.35$ and $7.53-7.94$ ($3 \mathrm{H}, \mathrm{m}$ and $2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$) (HRMS m / z Calc. for $\mathrm{C}_{16} \mathrm{H}_{18}: 210.1409$. Found: 210.1400).

$\operatorname{Bis}[(Z)$-o-(5,5-dimethylhex-1-en-3-ynyl)phenyl]di-n-butyl-

stannane 6a. Pale yellow oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2225(\mathrm{C} \equiv \mathrm{C})$; $\delta_{\mathrm{H}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.65-1.08$ and $1.30-1.56(6 \mathrm{H}, \mathrm{m}$ and 12 H , $\left.\mathrm{m}, \mathrm{Bu}^{n} \times 2\right), 1.26\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \times 2\right), 5.58(2 \mathrm{H}, \mathrm{d}, J 11.8$, Ph-$\mathrm{CH}=\mathrm{CH}-\times 2), 6.53(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.8, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\times 2), 7.05-7.57$ and 8.34-8.56 ($6 \mathrm{H}, \mathrm{m}$ and $2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$) (HRMS m / z Calc. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{Sn}\left(\mathrm{M}^{+}-\mathrm{Bu}^{n}, 57\right): 543.2074$. Found: 543.2070).
$\operatorname{Bis}[(\boldsymbol{Z})-\boldsymbol{o}$-(oct-1-en-3-ynyl)phenyl]di- \boldsymbol{n}-butylstannane $\mathbf{6 b}$. Pale yellow oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2200(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.66-1.63$ and $2.20-2.53\left(32 \mathrm{H}, \mathrm{m}\right.$ and $\left.4 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{n} \times 4\right), 5.60$ ($2 \mathrm{H}, \mathrm{dt}, J 11.8,2.2, \mathrm{Ph}-\mathrm{CH}=\mathrm{C} H-\times 2$), 6.57 ($2 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{Ph}-$ $\mathrm{CH}=\mathrm{CH}-\times 2), 7.10-7.59$ and $8.33-8.53(6 \mathrm{H}, \mathrm{m}$ and $2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}-\mathrm{H})$ (HRMS m/z Calc. for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{Sn}: 600.2778$. Found: 600.2794).
$\operatorname{Bis}[(Z)$-o-(pent-1-en-3-ynyl)phenyl]di- \boldsymbol{n}-butylstannane $\mathbf{6 c}$. Pale yellow oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2210(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.63-1.04$ and $1.33-1.60\left(6 \mathrm{H}, \mathrm{m}\right.$ and $\left.12 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{n} \times 2\right)$, $1.98(6 \mathrm{H}, \mathrm{d}, J 2.6, \mathrm{Me} \times 2), 5.58(2 \mathrm{H}, \mathrm{dt}, J 11.4,2.6$, Ph-$\mathrm{CH}=\mathrm{CH}-\times 2), 6.51(2 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\times 2), 7.14-7.56$ and 8.30-8.46 ($6 \mathrm{H}, \mathrm{m}$ and $2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$) (HRMS m/z Calc. for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{Sn}: 516.1876$. Found: 516.1839).
$\operatorname{Bis}[(Z)-o$-(hept-1-en-3-ynyl)phenyl]di- n-butylstannane $\mathbf{6 d}$. Pale yellow oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2200(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}$, CDCl_{3}) 0.84-1.07, 1.36-1.70 and 2.26-2.42 ($12 \mathrm{H}, \mathrm{m}, 16 \mathrm{H}, \mathrm{m}$ and $4 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{n} \times 2$ and $\operatorname{Pr}^{n} \times 2$), $5.59(2 \mathrm{H}, \mathrm{dt}, J 12.1,2.4, \mathrm{Ph}-$ $\mathrm{CH}=\mathrm{CH}-\times 2), 6.50(2 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\times 2), 7.17-7.40$ and $8.38(6 \mathrm{H}, \mathrm{m}$ and $2 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{Ph}-\mathrm{H})$ (HRMS m / z Calc. for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{Sn}\left(\mathrm{M}^{+}-\mathrm{Bu}^{n}, 57\right)$: 515.1761. Found: 515.1753).
$\operatorname{Bis}[(Z)-o-(d e c-1-e n-3-y n y l) p h e n y l] d i-n$-butylstannane 6 e. Pale yellow oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2205(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.84-0.88,1.29-2.02$ and $2.31-2.38$ (total $44 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{n} \times 2$ and $\left.n-\mathrm{C}_{6} \mathrm{H}_{13} \times 2\right), 5.59(2 \mathrm{H}, \mathrm{dt}, J 11.7,2.4, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\times 2), 6.51$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.1, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\times 2$), $7.12-7.57$ and $8.38(6 \mathrm{H}, \mathrm{m}$ and $2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{Ph}-\mathrm{H}$) (HRMS m / z Calc. for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{Sn}$ ($\mathrm{M}^{+}-\mathrm{Bu}^{n}, 57$): 599.2700. Found: 599.2706).
$\operatorname{Bis}[(Z)-o$-(dodec-1-en-3-ynyl)phenyl]di-n-butylstannane 6 . Pale yellow oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2200(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}$, CDCl_{3}) 0.69-1.03, 1.20-1.59 and 2.23-2.46 (total $52 \mathrm{H}, \mathrm{m}$, $\mathrm{Bu}^{n} \times 2$ and $n-\mathrm{C}_{8} \mathrm{H}_{17} \times 2$), $5.58(2 \mathrm{H}, \mathrm{dt}, J 12.0,2.4, \mathrm{Ph}-\mathrm{CH}=$ $\mathrm{CH}-\times 2), 6.53(2 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\times 2), 7.12-7.50$ and $8.30-8.50(6 \mathrm{H}, \mathrm{m}$ and $2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H})$ (HRMS m / z Calc. for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{Sn}\left(\mathrm{M}^{+}-\mathrm{Bu}^{n}, 57\right)$: 655.3326. Found: 655.3299).
$\operatorname{Bis}[(Z)-o-(1-c y c l o h e x y l b u t-1-e n-3-y n y l) p h e n y l] d i-n$-butylstannane 6 g . Pale yellow oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2200(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}(90$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.77-1.76$ and $2.58\left(38 \mathrm{H}, \mathrm{m}\right.$, and $2 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{n} \times 2$ and $\mathrm{Cy}-\mathrm{H} \times 2), 5.61(2 \mathrm{H}, \mathrm{dt}, J 11.7,2.2, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\times 2)$, $6.50(2 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\times 2), 7.17-7.47$ and $8.43(6 \mathrm{H}$, m and $2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{Ph}-\mathrm{H}$) (HRMS m/z Calc. for $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{Sn}$ $\left(\mathrm{M}^{+}-\mathrm{Bu}^{n}, 57\right): 595.2387$. Found: 595.2362).

Conversion of 4a into 2-tert-butyl-1-chloro-1-benzostibepine 9a

The reaction of $\mathbf{4 a}$ with SbCl_{3} was carried out in an NMR tube; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.25\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 6.41(1 \mathrm{H}, \mathrm{dd}, J 5.5$, $12.7,4-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{d}, J 5.5,3-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{d}, J 12.7,5-\mathrm{H})$, $7.25-7.59$ and $7.92(3 \mathrm{H}, \mathrm{m}$ and $1 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{Ph}-\mathrm{H})$.

2-tert-Butyl-1-phenyl-1-benzostibepine 10a

A solution of $\mathbf{4 a}(71 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(2 \mathrm{ml})$ was added in one portion with stirring to $\mathrm{SbCl}_{3}(39 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{ml})$ under an argon atmosphere at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was vigorously stirred at room temperature for 30 min . After removal of the solvent at room temperature in vacuo, followed by exclusion of BuSnCl_{2} at $100-110^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$ using a semimicro distillation apparatus, the resulting residue was dissolved in hexane (10 ml). To this hexane solution of crude 9 at $-20^{\circ} \mathrm{C}$ was added $\mathrm{PhLi}\left(1.14 \mathrm{~mol} \mathrm{l}^{-1}, 0.25 \mathrm{ml}, 0.17 \mathrm{mmol}\right)$. The mixture was stirred under the above conditions for 30 min , quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{ml})$ and extracted with hexane $(30 \mathrm{ml} \times 3)$. The organic layer was washed with brine ($30 \mathrm{ml} \times 2$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The resulting residue was chromatographed on silica gel using hexane as eluent to give $\mathbf{1 0 a}(23 \mathrm{mg}, 36 \%$ from $\mathbf{4 a}$) as a colorless oil. This compound was identical with the authentic sample prepared in our previous paper. ${ }^{13}$

2-n-Butyl-1-phenyl-1-benzostibepine 10b

The stannepine 4b was treated with SbCl_{3} and worked up as described for the preparation of $\mathbf{1 0 a}$ to give $\mathbf{1 0 b}(27 \mathrm{mg}$, 41% from $\mathbf{4 b}$) as a colorless oil. This compound was identical with the authentic sample prepared in our previous paper. ${ }^{13}$

2-tert-Butyl-1-methyl-1-benzostibepine 11a

The stannepine $\mathbf{4 a}$ was treated with MeLi instead of PhLi and worked up as described for the preparation of 10a to give 11a ($31 \mathrm{mg}, 57 \%$ from 4a) as a colorless oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{Sb}-\mathrm{Me}), 1.18$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}$), 6.28 (1 H , dd, J 6.0, 13.2, $4-\mathrm{H}), 6.69(1 \mathrm{H}, \mathrm{d}, J 6.0,3-\mathrm{H}), 6.82(1 \mathrm{H}, \mathrm{d}, J 13.2,5-\mathrm{H}), 7.29-$ 7.49 and $7.61-7.71(3 \mathrm{H}, \mathrm{m}$ and $1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, CDCl_{3}) -6.2 (q), 30.6 (q), 39.4 (s), 127.4 (d), 127.9 (d), 128.1 (d), 129.4 (d), 129.6 (d), 132.6 (d), 133.8 (s), 137.1 (d), 142.8 (s), 157.2 (s) (HRMS m / z Calc. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Sb}: 320.0525$. Found: 320.0533).

2-n-Butyl-1-methyl-1-benzostibepine 11b

The stannepine $\mathbf{4 b}$ was treated with MeLi instead of PhLi and worked up as described for the preparation of 10a to give 11b ($22 \mathrm{mg}, 41 \%$ from 4b) as a colorless oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $1.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Sb}-\mathrm{Me}), 0.90,1.22-1.58$ and $2.36(3 \mathrm{H}, \mathrm{t}, J 7.5,4 \mathrm{H}$, m and $\left.2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{Bu}^{n}\right), 6.30(1 \mathrm{H}, \mathrm{dd}, J 5.3,12.3,4-\mathrm{H}), 6.46$ $(1 \mathrm{H}, \mathrm{d}, J 5.3,3-\mathrm{H}), 6.92(1 \mathrm{H}, \mathrm{d}, J 12.3,5-\mathrm{H}), 7.23-7.35$ and $7.46-7.50(3 \mathrm{H}, \mathrm{m}$ and $1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $-5.5(\mathrm{q}), 14.0(\mathrm{q}), 22.3(\mathrm{t}), 32.3(\mathrm{t}), 38.4(\mathrm{t}), 127.5(\mathrm{~d}), 128.2(\mathrm{~d})$, 128.6 (d), 130.7 (d), 130.8 (d), 132.3 (d), 133.9 (s), 136.0 (d), 142.0 (s), 144.9 (s) (HRMS m / z Calc. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Sb}: 320.0525$. Found: 320.0526).

2-tert-Butyl-1-n-butyl-1-benzostibepine 12a

The stannepine $\mathbf{4 a}$ was treated with $\mathrm{Bu}^{n} \mathrm{Li}$ instead of PhLi and worked up as described for the preparation of 10a to give 12a $(14 \mathrm{mg}, 23 \%$ from $\mathbf{4 a})$ as a colorless oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.20\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.81$ and $1.23-1.73(3 \mathrm{H}, \mathrm{t}, J 7.3$ and $6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Bu}^{n}\right), 6.24(1 \mathrm{H}, \mathrm{dd}, J 6.0,13.2,4-\mathrm{H}), 6.76(1 \mathrm{H}, \mathrm{d}, J 6.0,3-\mathrm{H})$, $6.78(1 \mathrm{H}, J 13.2,5-\mathrm{H}), 7.28-7.32$ and $7.60-7.72(3 \mathrm{H}, \mathrm{m}$ and 1 H , $\mathrm{m}, \mathrm{Ph}-\mathrm{H})$ (HRMS m / z Calc. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{Sb}: 362.0995$. Found: 362.0994 .

1,2-Di-n-butyl-1-benzostibepine 12b

The stannepine $4 \mathbf{a}$ was treated with $\mathrm{Bu}^{n} \mathrm{Li}$ instead of PhLi and worked up as described for the preparation of 10a to give 12b $\left(15 \mathrm{mg}, 25 \%\right.$ from 4b) as a colorless oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.85-1.20,1.20-1.60$ and $2.22-2.35(8 \mathrm{H}, \mathrm{m}, 8 \mathrm{H}, \mathrm{m}$ and $2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Bu}^{n} \times 2\right), 6.25(1 \mathrm{H}, \mathrm{dd}, J 6.0,13.0,4-\mathrm{H}), 6.50(1 \mathrm{H}, \mathrm{d}, J 6.0$,
$3-\mathrm{H}), 6.88(1 \mathrm{H}, \mathrm{d}, J 13.0,5-\mathrm{H}), 7.30-7.33$ and $7.60-7.75(3 \mathrm{H}, \mathrm{m}$ and $1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$) (HRMS m / z Calc. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{Sb}$: 362.0995 . Found: 362.0999).

Conversion of 4a into 2-tert-butyl-1-chloro-1-benzoborepine 14a

A solution of $\mathbf{4 a}(71 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(2 \mathrm{ml})$ was added in one portion with stirring to $\mathrm{BCl}_{3}(20 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{ml})$ under an argon atmosphere at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was vigorously stirred at room temperature for 30 min . After evaporation of the solvent, the resulting residue was distilled under reduced pressure to give $\mathbf{1 4 a}(17 \mathrm{mg}, 44 \%)$ as a pale yellow oil, bp $90-100^{\circ} \mathrm{C}(2 \mathrm{mmHg}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.43$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 6.75(1 \mathrm{H}, \mathrm{dd}, J 8.4,11.9,4-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{d}, J 8.4$, $5-\mathrm{H}), 7.49(1 \mathrm{H}, \mathrm{d}, J 11.9,3-\mathrm{H}), 7.40-7.60$ and $8.30-8.40(3 \mathrm{H}, \mathrm{m}$ and $1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$) (HRMS m / z Calc. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BCl}$: 230.1034, 232.1004. Found: 230.1031, 232.1011).

Conversion of 4a into 2-tert-butyl-1-phenyl-1-benzoborepine 15a

The stannepine $\mathbf{4 a}$ was treated with PhBCl_{2} instead of BCl_{3} and worked up as described for the preparation of 14a to give 15a ($25 \mathrm{mg}, 54 \%$) as a colorless oil, bp $80-100^{\circ} \mathrm{C}\left(4 \times 10^{-6}\right.$ $\mathrm{mmHg}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.19\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right), 6.50(1 \mathrm{H}$, dd, $J 7.0,11.7,4-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{d}, J 7.0,3-\mathrm{H}), 6.88(1 \mathrm{H}, \mathrm{d}$, J 11.7, $5-\mathrm{H}), 7.32-7.52$ and $7.71-7.80(6 \mathrm{H}, \mathrm{m}$ and $3 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 32.4$ (q), 36.9 (s), 124.8 (d), 126.8 (d), 127.0 (d), 127.3 (d), 127.4 (d), 127.5 (d), 128.6 (d), 131.0 (d), 131.3 (d), 135.8 (d), 136.6 (s), 141.6 (s), 148.4 (s), 159.3 (s) (HRMS m/z Calc. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~B}: 272.1736$. Found: 272.1734).

Acknowledgements

The authors wish to express thanks to Mr S. Yasuike (Faculty of Pharmaceutical Sciences Horuriku University) for the ${ }^{13} \mathrm{C}$ NMR spectral measurements.

References

1 (a) J. Dubac, A. Laporterie and G. Manuel, Chem. Rev., 1990, 90, 215; (b) E. Colomer, R. J. P. Corriu and M. Lheureux. Chem. Rev., 1990, 90, 265.
2 W. P. Neumann, Chem. Rev., 1991, 91, 311.
3 (a) A. J. Ashe, III, Acc. Chem. Res., 1978, 11, 153; (b) P. Jutzi, J. Organomet. Chem., 1969, 19, 1; (c) P. Jutzi, Chem. Ber., 1971, 104, 1455; (d) F. Bickelhaupt, C. Jongsma, P. de K. R. Lourens, N. R. Mast, G. L. van Mourik, H. Vermeet and J. M. Weustink, Tetrahedron, 1976, 32, 1921; (e) A. J. Ashe, III and P. Shu, J. Am. Chem. Soc., 1971, 93, 1804; (f) A. J. Ashe, III, W.-T. Chan and E. Perozzi, Tetrahedron Lett., 1975, 1083; (g) A. J. Ashe, III and W.-T. Chan, J. Org. Chem., 1979, 44, 1409; (h) A. J. Ashe, III, T. R. Diephouse and Y. El-Sheikh, J. Am. Chem. Soc., 1982, 104, 5693; (i) H. A. Meinema and J. G. Noltes, J. Organomet. Chem., 1973, 63, 243.
4 (a) A. L., Leusink, J. G. Noltes, H. A. Budding and J. M. van der Kerk, Recl. Trav. Chim. Pays-Bas, 1964, 83, 1036; (b) A. J. Ashe, III, J. W. Kampf, C. M. Kausch, H. Konishi, M. O. Kristen and J. Kroker, Organometallics, 1990, 9, 2944.

5 (a) Y. Sugihara, T. Yagi and I. Murata, J. Am. Chem. Soc., 1992, 114, 1479; (b) Y. Sugihara, R. Miyatake and T. Yagi, Chem. Lett., 1993, 933.

6 Y. Sugihara, R. Miyatake, I. Murata and A. Imamura, J. Chem. Soc., Chem. Commun., 1995, 1249.
7 A. J. Ashe, III and F. Drone, J. Am. Chem. Soc., 1987, 109, 1879.
8 (a) Y. Nakadaira, R. Sato and H. Sakurai, Chem. Lett., 1987, 1451; (b) A. J. Ashe, III, J. W. Kampf, Y. Nakadaira and J. M. Pace, Angew. Chem., Int. Ed. Engl., 1992, 31, 1255.
9 Y. Nakadaira, R. Sato and H. Sakurai, J. Organomet. Chem., 1992, 441, 411.
10 (a) A. L. Leusink, J. G. Noltes, J. M. van der Kerk, Tetrahedron Lett., 1967, 1263; (b) G. Axelrad and D. Halpern, J. Chem. Soc., Chem. Comтип., 1971, 291.
11 A. J. Ashe, III, L. Goossen, L. W. Kampf and H. Konishi, Angew. Chem., Int. Ed. Engl., 1992, 31, 1642.
12 S. Yasuike, S. Shiratori, J. Kurita and T. Tsuchiya, Chem. Pharm. Bull., 1999, 47, 1108
13 H. Sashida, Heterocycles, 2000, 53, 49
14 Preliminary communication; H. Sashida, A. Kuroda and T. Tsuchiya, Chem. Commun., 1998, 767.
15 (a) H. Sashida, K. Ito and T. Tsuchiya, J. Chem. Soc., Chem. Comтип., 1993, 1493; (b) H. Sashida, K. Ito and T. Tsuchiya, Chem. Pharm. Bull., 1995, 43, 19.
16 (a) H. Sashida, H. Kurahashi and T. Tsuchiya, J. Chem. Soc., Chem. Comтип., 1991, 802; (b) H. Sashida, K. Sadamori and T. Tsuchiya, Synth. Commun., 1998, 28, 713; (c) H. Sashida, Synthesis, 1998, 745; (d) H. Sashida and A. Kawamukai, J. Heterocycl. Chem., 1998, 35, 165; (e) H. Sashida and S. Yasuike, J. Heterocycl. Chem., 1998, 35, 725; (f) H. Sashida, Heterocycles, 1998, 48, 631; (g) H. Sashida and K. Ohyanagi, J. Chem. Soc., Perkin Trans. 1, 1998, 2123; (h) H. Sashida and K. Ohyanagi, Heterocycles, 1999, 51, 17; (i) H. Sashida and A. Kuroda, Synthesis, 1999, 921; (j) H. Sashida and A. Kawamukai, Synthesis, 1999, 1145.
17 A. K. Sawyer and H. G. Kuviila, Chem. Ind., (London), 1961, 260.
18 S. A. Kandil and R. E. Dessy, J. Am. Chem. Soc., 1966, 88, 3027.
19 K. Nozaki, K. Oshima and K. Uchimoto, J. Am. Chem. Soc., 1987, 109, 2547 and references cited therein.
20 Y. Ichinose, H. Oda, K. Oshima and K. Uchimoto, Bull. Chem. Soc. Jpn., 1987, 60, 3468 and references cited therein.
21 N. Asao, J.-X. Liu, T. Sudoh and Y. Yamamoto, J. Chem. Soc., Chem. Comтип., 1995, 2405 and references cited therein.
22 (a) A. J. Leusink, H. A. Budding and J. W. Marsman, J. Organomet. Chem., 1967, 9, 285; (b) A. J. Leusink, H. A. Budding and W. Drenth, J. Organomet. Chem., 1967, 9, 295.

23 (a) A. J. Ashe, III, J. Am. Chem. Soc., 1971, 93, 6690; (b) A. Meinema, C. J. R. Crispimromao and J. G. Noltes, J. Organomet. Chem., 1973, 55, 139; (c) F. Bickelhaupt, R. Lourens, H. Vermeer and R. J. M. Weustink, Recl. Trav. Chim. Pays-Bas, 1979, 98, 3.
24 A. J. Ashe, III, F. J. Drone, C. M. Kausch, J. Krocker and S. M. Al-Taweel, Pure Appl. Chem., 1990, 62, 513.
25 (a) S. M. van der Kerk, J. Borsma and G. J. M. van der Kerk, J. Organomet. Chem., 1981, 215, 303; (b) J. M. Schulman, R. L. Disch and M. L. Sabio, J. Am. Chem. Soc., 1982, 104, 3875; (c) R. L. Disch, M. L. Sabio and J. M. Schulman, Tetrahedron Lett., 1983, 24, 1863; (d) J. M. Schulman, R. L. Disch and M. L. Sabio, J. Am. Chem. Soc., 1984, 106, 7696; (e) A. J. Ashe, III, J. W. Kampf, W. Klein and R. Rousseau, Angew. Chem., Int. Ed. Engl., 1993, 32, 1065.

26 Y. Sugihara, R. Miyatake, T. Yagi and I. Murata, Tetrahedron, 1994, 50, 6495.
27 G. Zweifel, G. M. Clark, T. Leung and C. C. Whitney, J. Organomet. Chem., 1976. 117, 303.
28 S. Shiratori, S. Yasuike, J. Kurita and T. Tsuchiya, Chem. Pharm. Bull., 1994, 42, 2441.

[^0]: \dagger The yields obtained for compounds 4, 5 and 6, together with ${ }^{1} \mathrm{H}$ and
 ${ }^{13} \mathrm{C}$ NMR measurements for the 1-benzostannepines 4, are available as supplementary data. For direct electronic access see http://www.rsc.org/ suppdata/pl/b0/b000900h/

